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Abstract: Due to the increased computer speed and memory nowadays available, very large numerical
groundwater models {with finite difference and finite elements) can be constructed. Those model networks can
be time-efficiently parameterised using GIS systems. These advantages, both the computer speed and the
accessibility of digital data, change into a disadvantage when there is 4 need for many model computations. For
model calibration and optimisation of hydrologic cases, many impulse-response computations are necessary.
Although the computer speed will definitely increase in the future, it appears that the need for model evaluations
Increases more rapidly than this computer speed. A recent study has shown possibilities to reduce complex
computationzl models to relatively simpie models. In essence, 2 reduced space is captured which contains most
of the relevant information of the compiex model. The dimension of this reduced space is often small compared
to the original dimension and models which compute in a low-dimensional space will require less CPU time. To
find the denominators in a large-dimensional space, a particular data-driven pattern identification technique,
Empirical Orthogonal Functions (EQFs), is used. These EOFs are the eigenvectors of the system covariance
matrix; the accompanying eigenvalue indicates the importance of that particutar ei genvector, Those EOFs which
contribute the most to the explanation of the complex model behaviour are included in the reduced model; the
others are left out. The computational efficiency and accuracy of this reduction method are discussed.
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1. INTRODUCTION 1 _

b= 1P (1)

_The increased computer speed has Ied to numerical ... =l

groundwater models dimensioned by networks with
an enormous amount of grid points. Due to GIS where by (L) is the result for fime step k, r; these in
systems those schemes can be parameterised reduced space (L) and P’ is the i selected important
accurately and time-efficiently, justifying the amount pattern (dimensionless) out of n. The entire reduction
of grid points required. To compute this groundwater process is summarized in Figure 1.
model, it is necessary to solve a set of equations
egual 10 ih.e nurpber of grid points. More grid p'omts 1) um Corpiex Moder 2) Pattern Kot ioaton
will definitely increase the required computational - trairing - - _
time, but introducing less grid points, declines the G
accuracy on a local scale which is undesirable. The 7 b Select Pattems
question is: “How can model reduction be applied 5) Analyse Errors
without the loss of information on a local scale?” 4, a
The key thought for this kind of mode! reduction is 3) Construct Reduced Model

to catch patterns which together represent the space 6} Accept
Reduced

in which the model! acts (Hooimeijer [20017). The Moda! 4} Run Reduced Model
most important patterns are physical processes, iess

important patterns (noise) can be neglected. Model
reduction without the loss of detail is implemented as
a weighted sum of those distinguished important
patterns, se¢ equation {1}.

Figure 1. Principle of model reduction based on
data mining from a complex model.

From Figure 1 it appears that model reduction can be
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an iterative process. First, the complex made! should
be rrained in such a manner that all future dynamics
are captured by patterns. Secondly, the results from
the reduced model are analysed and the error can
tead to a) accepting the reduced model, b) adding
more patierns or ¢} training the complex model for a
different or longer peried.

This paper describes the method proposed in Figure
i. A test model will illustrate the mathematics
underlying the method, Figure 2.
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Figure 2, Layout of the test mogdel.

The test model (2500 cells) has a Dirichiet boundary
condition on the left and right mode! edges. There
are 2 independent wells with randomly an infiltration
and/or exfiltration rate of maximum 500 m’ day™.
There is a river heading from north to south with a
water level fluctuation of 2 meter. There is recharge

= 1o tnmtags E . -1 ;
randomby-between—t0-and-H0-pm-day’ - The-model

and time steps N The results are arranged in 2
matrix X with vectors (columns in X), %, X3, ..., %x
(N=N;). Each x, contains the results at each grid
location at a given time step k. Locations that act
time-independently are excluded from X. The pattern
value for these locations is zero.

To quantify the dysamics in the model one should
zera average sach x; by subtracting the mean vector:

V.

_2 X (2)

T =l

2

The main difference between I and X is that all grid
points within €, are comparable to each other in
terms of differences (variances) instead of absolute
magnitudes. To express the correlation of each grid
point to the other ones, we computed the covariance
as the major product of I

1 T
Crgang) = _q DiNGxNT;DmeNG; 3

Ny

where ©[NgxN.] is the covariance matrix with
dimension NoXig.

The eigenvalue decomposition factorises the
symmetric matrix € into real normalized
eigenvectors v (+7¥=1.0) and eigenvalues A (A
>=0.0), for k=1.Ng:

is simulated for 60 time steps, each 1 day long.

2 PATTERN IDENTIFICATION

Bl Wt s A PRECTE.T e

A pattern is a combination of distinguished physical
processes which denominates the model. Therefore
a pattern is comparable with analytical elements used
and proposed by Strack [1989]. Instead of
representing only one feature (well, river e.g.), a
patterns can represent combined features within
distorted parameterisations,

There are two basic types of paitern identifications
techniques, data driven and analyticai driven
techniques. This paper only describes the data driven
technique and is usual called Empirical Orthogonal
Functions (Richman et al. [1986]).

2.2 Empirical Orthogonal Functions (EOFs)
To identify the patterns {called EOFs) in the results

of the groundwater mode! we created a data set. The
groundwater model has a number of grid points Ny

Cv, =v, 4, {4)

where v, is the k" eigenvector go with the Kt
gigenvalue J;. The eigenvalues are scaled to

- repfﬁsﬂi’!’t ti’te"e-xpi-ained----vari-a'nee-, for kmi,.NG;. e e

A, %100

= 5
¥ trace(C) ©

where trace(C) is the total variance formulated as
the summation of the main diagonal in €.
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Figure 3. Explained variance by the important EQFs.
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In Figure 3 the largest EOFs are presented for the
test model. Apparently the complex model can be
described for 98% by 3 patterns and for 99.9% by 6
patterns only.

2.3 Efficient Computation of EOFs

In practice Ny<<N; and therefore the rank of the
covariance matrix € is equal to N;. This results for
N>N; in eigenvalugs A, equal 0.0 and therefore
eigeavectors v, equal 0.0. Instead of calculating the
eigenvalues for the major product of I (equation 3),
which is a fime-consuming process, we compute the
eigenvalues for the minor product of I

DT

[NpaNgl

E){NGXNT] = ({jA{jT){NTxNT} {6)

where U and A are matrices with the eigenveciors
and eigenvaiues, respectively, but with a small
dimension N, instead of a large dimension N, To
expand the eigenvectors to dimension Ng we applied
the following formulation {Golub et al. [1989]):

~1/2
[NpxNyp |

v

o] = Dyt Uinpay

(7

where it is easy to compute A" (square root of the

inverse of A) because A is a main diagonal matrix
with only positive eigenvalues.

In Figure 4 the maximum absolute error (Max.Abs)
shows a  sigaificant improvement between 4
(99.37%) and & (99.94%) EOFs. The average
absolute error (Avg.Abs) shows the same behaviour
but at a magnitude smaller. Adding more EOFs (>6)
will increase the computational time more than it will
improve the model results.

In the literature different kinds of strategies are
mentioned to obtain the amount of EOFs {ie.
Reyment et al. {1993] and Hooimeijer [2001]). One
philosophy for gathering EOFs is to collect those
patterns which describe a physical process and o
teave out all others. In Figure 3 the patterns of the
main 6 EOFs from Figure 3 are presented. Al
patterns are clearly related to a physical process
{(wells and tiver} within the modei,
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2.4 How Many Patterns 7

Theory-prescribes that the rank of the covariance
matrix € will provide the minimum number of
patterns necessary (o describe the data completely. Tt

18 the challenge to increase the computational speed

by reducing the number of patterns such that an
acceptable reconstruction can be applied. In Figure
4 the number of EOFs is plotied against the
reconstruction errer between the reduced model and
the complex model.
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Figure 4. Calculated differences {m) in
" groundwater levels for a different number of EOFs.
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Figure 5. Patterns (dimensionless) for the main 6
EQFs explaining 99.94% variance in total. The
upper left box is EOF no. [, the lower right box is
EOF no. 6.

Statistically speaking, patierns will become more
related 1o physical processes if they are based on
large data sets. On the other hand patteras can be
obtained time-efficiently if the mode! impulse for the
model (rraining) is chosen wisely. Finally, patterns
can he obtained by a covartance matrix which is
based only on results from certain areas of interest
within the model. In this manner patterns will
become more representative for the interested area.



3 CREATING A REDUCED MODEL
FOR GROUNDWATER FLOW

31 Mumerical Medelling of Groundwater
Flow

To describe groundwater flow in a two-dimensional
plane we use the groundwater-flow eguation based
on Darey’s law and the equation of continuity
[Strack, 1989]:

d dh. o oh
AT T =5 :
a}:( . ax} &){ ) E» (8)

where I is the groundwater head (L), x.y are the
coordinates in space (L), t is the time (T) T, is the
transmissivity in x and y direction (L*T™), S is the
storage coetﬁment ( ) and g is the discharge or
recharge term {L° T, In models such as MODFLOW
{McDonald and Harbaugh, 1988] equation (8) is
discretized for a mesh of grid cells into an equation
with finite differences:
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of five diagonals with non-zero elements.
Rearranging A in equation (10) to the other side of
the equation will result in a formulation for the
groundwater flow to be solved explicitly:

h,=A"'Sh,_, +A™g (11)

To solve equation (11} we should compute A™' (the
inverse of A). This is a very time-consuming process
and should be avoided. Due to the incorporation of
EQFs this problem car be overcome in reduced
space

32 Reduced Model

The selected EOFs (§2.4) are stored as vectors p in
matrix P (calied the reductor). The first vector p; in
P is the one with the largest eigenvalue A, the second
vector py is the one with the second-largest
eigenvalue and so on. The reductor P is orthonormal;

all vectors have a fength of 1.0 and are perpendicular
to each other (P P=1). P has as many columns as
selected EOFs and the number of rows is equal to the
amount of acrive grid peints in the model; so
PIN.xNGL

In the operator approach, P can operate as reductor
(P") and reconstructor (¥). The reductor reduces a

high-dimensional vector {Ng] by vecior multiplication
toa low-dimensional space [Nr}; the reconstructor

where Tiy; is the [ransmssivily over the cell face
between the grid celis with indices i-1,j and ij
{i=row;j=column number). For grid cell 1] the
groundwater head of the previous time step. is
expressed as h*’. The equation can be written in
malrix notation o be suiw& ,mphcul}

Ah, _Shkl+q (1)
here
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The symmetric system matrix 4 is a very sparse
matrix consisting, for this two-dimensional case, out

performs the reverse operation. To reduce a matrix
we should first multiply it with the reductor and
thereafter with the reconstructor, Equation (11) can
be projecied into reduced space by applying the
reductor PT and reconstructor P:

- E-kxp"fai“lgpp?hkmi_F PTG .

where 1y [N,] is the groundwater head (L) for time
step k In reduced space. To reconstruct the
groundwater head to the original space [N|, apply:

h, =Pr, (13)

3.3 Solving the Beduced Model

It is not recommended, and even unnecessary to
solve the reduced model completely for each time
step k. Though most of the terms in equation (12) are
tine-independent {matrices PT,A",S and P), the
reduced model can be simplified by carrying out
some matrix multiplications beforehand. The main
issue here is avoiding the computation of A%,



Due to the symmetric form of A, equation (12} can
be rewritten as:

r,=(A7"P)'SPP"h,_ +(AT'P)Tq (14

Instead of computing A completely, we introduce a
matrix M as:

AP=Mo AM=P (15)

Each vector p in P is solved seguentiatly to find the
vectors m in M; for i=1,N,:

Am, =p, (16
The reduced model (12) can be minimized to

r, =Nr,_, +M'q (17)
where

N=DM'SP (18)

The reduced model consists finally of three time
independent matrices: P[NgaNg], B[NexnN] and
N[nxivp] and two time-dependent vectors gy [N.] and
g[Ng]. To compute the groundwater heads in reduced
space one needs a total of (M*NANG*N N, FLOPS
(floating-point operations} for each time step k. For

explainable by the fluctuations of the model forces
only (wells, recharge and river). The error does not
have the tendency to grow over time due to missing
patterns or wrongly defined patterns. The reduced
model is stable and can therefore be used for longer
simulations different than the one used to rrain the
compiex model. In Figure 7 a plane view is given of
the absolute maximum differences after 60 time
steps.

00

Figure 7. Plane view of absolute maximum
differences after 60 time steps of simulation.

The unacceptable major error (0.11m) only occurs
iocally in the middie of the right well. Except this

the test model with 2500 equations this results in
15042 FLOPs. In Figure 6 the resuits are presented as
differences between the complex model and the
reduced model with 6 EOFs (Figure 5), explaining
99.94% variance.
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Figure 6. Calculated differences in groundwater
levels {m} as the absolute maximum and the
absolute average.

The absolute maximum error {Abs.Max) and the
absolute average (Abs.Avg) both show a trend
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€fTor, the errors int the remaining area are accepiabiy
small (<0.025m) and can be ascribed to those zones
in which the groundwater fluctuation is maximurm,
caused by welis, the river and recharge.

- fitial conditions -

Groundwater models often have initial conditions
different from zero. The reduced model is based on
the superposition of patterns, and for the first time
step, no patterns haven been applied yet. Therefore
the imitial conditions for the reduced model are
always equal to zero, despite the original initial
conditions, To include those initial values correctly
we should add the results from equation (13) at the
end of the simulation to the initial values by, SO

h, =Pr, +h (19)

initivl
For features like surface water and other head-
resistance relationships within a groundwater model,
absolute levels herein (water levels, drainage base)
should be corrected by subtracting the inital
condition at that specific location before adding it to
the force vector g within equation (12) or {17).



3.5 Verification and Suitability of the
Reduced Model

One of the main reasons to create a reduced model is
to speed up computational time by applying the
reduced model to other cases. These models should
not possess more dynamic or different locations with
forcing-terms (wells, rivers e.g.), another time
discretisation and/for a different system matrix. What
may differ in such other models, are the forces on the
same locations, for example the extraction rates or
the water levels. In Figure 8 results are given for a
model with different forces than the one used for the
model fraining. The distribution of the errors are
comparable with those in Figure 7.
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4. CONCLUSIGNS

For many years the evolution of computers was much
faster than that of the accessibility of digital data.
Nowadays it seems the other way around, and
numerical models grow farger and larger, swallowing
computational time. This paper describes a different
strategy in solving those model by searching for
patterns. Those patterns (Empirical Orthogonal
Functions), are the most important eigenvectors of
the covariance matrix, which is computed from one
transient model simulation. EOFs can be compared
with the analytical elements used and proposed by
Strack [1989]. Instead of representing one feature
(analytical element), EOFs can represent combined
features within distorted parameterisations.

The described EOF method reduces the complex
model to a smaller space which still can predict the
behaviour of the complex model. Instead of solving
millions of equations iteratively, the reduced model
computes the groundwater heads by only three
matrix multiplications. The computational effort is
thus reduced enormously.

Besides gaining time, the discussed model aiso
makes it possible to select an area of interest from
the reduced (regional) model. Without reconstructing
the modei and concerning about model edges, more
time can be saved because oaly a limited part of the
reduced model has to be muliplied. This practical

T
200

Figure 8, Maximum difference in groundwater
levels by verification of the reduced model with
different model forces.

- The-time efforis-derived with-the reduced model-are----

shown in Figure 9. In these linear cases the increased
CPU dme is linear for all processes mentioned in
Figure 9. The reduced model does gain more time
effort for larger model schemes.
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Figure 2. CPU times for the computation of the
compiex model, the EOFs and the reduced model.

phenumenon—can-bemplememted-—within Decision

Support Systems (IDSS).
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